Introduction

Background: Antimicrobial resistance (R) continues to be a concern for the treatment of respiratory infections acquired in the community. We evaluated the activity of solithromycin, a novel ketolide antimicrobial, against bacterial species associated with community-acquired pneumonia (CAP) and gram-positive (GP) organisms collected during 2011.

Methods: 12,818 isolates consecutively collected from 40 hospitals [29 in the USA (75 sites) and 11 in Europe (5,276)] in 2011 were susceptibility (S) tested against SOL and comparators by CLSI reference methods.

Results: Against S. aureus (SA), SOL (MIC<0.06 µg/mL) displayed activity against 97.2% (99.7%) of strains tested. SOL was two-fold more potent than telithromycin (MIC90, 0.12 µg/mL), but was two-fold less potent than CLD (MIC90, 0.06 µg/mL). SOL exhibited greater potency against E. faecium (MIC90, 0.5 µg/mL) and E. faecalis (MIC90, 0.5 µg/mL) than telithromycin (MIC90, >8 µg/mL). SOL demonstrated in vitro activity against C. pneumoniae, H. influenzae, and M. catarrhalis. SOL displayed MIC breakpoints of ≤0.03 µg/mL against S. pneumoniae, H. influenzae, M. catarrhalis, C. pneumoniae, and C. burnetii; however, negative results were obtained using CLD for these species.

Conclusion: The activity of solithromycin against respiratory tract pathogens was assessed using a large number of clinical specimens. SOL displayed potent in vitro activity against more gram-positive strains compared to other ketolides.

Acknowledgment

This study was supported by a research grant from Cempra Pharmaceuticals Inc.

References

6. Teicoplanin. The activity of solithromycin against respiratory tract pathogens was assessed using a large number of clinical specimens. SOL displayed potent in vitro activity against more gram-positive strains compared to other ketolides. The activity of solithromycin against respiratory tract pathogens was assessed using a large number of clinical specimens. SOL displayed potent in vitro activity against more gram-positive strains compared to other ketolides.

Conclusions

The activity of solithromycin against respiratory tract pathogens was assessed using a large number of clinical specimens. SOL displayed potent in vitro activity against more gram-positive strains compared to other ketolides. The activity of solithromycin against respiratory tract pathogens was assessed using a large number of clinical specimens. SOL displayed potent in vitro activity against more gram-positive strains compared to other ketolides.