Rapid selection and initiation of appropriate antibiotic therapy is crucial for the treatment of community-acquired pneumonia (CAP). However, treatment decisions are complicated by the difficulty of obtaining timely microbiological diagnosis, antibiotic resistance and the need to consider the severity of illness.

Materials and Methods

Data Sources
- This retrospective cohort observational study was conducted using the Truven Health MarketScan Hospital Drug Database.
- Coverage January 2007 through December 2012.
- Includes data from all U.S.-based hospitals (teaching and non-teaching).
- Captures all patient identification in patient demographics, clinical characteristics, medication and pharmacy utilization, as well as hospitalization costs.

Study Population
- **Inclusion criteria:**
 - Patients treated with antibiotic therapy within 48 hours of hospital admission.
 - Patients admitted to the ICU (ICU) or CCM within the first 24 hours.
 - Patients > 18 years of age.
- **Exclusion criteria:**
 - Patients with tuberculosis (196.xx, 197.xx, 198.xx, 199.zz).
 - Patients with HIV/AIDS (042.xx, 043.xx, 044.zz).
 - Patients with cancer (140.xx, 141.xx, 142.xx, 143.xx).
 - Patients with peripheral arterial disease (440.xx).
 - Patients with peripheral arterial disease (440.xx).
 - Patients with acute renal failure (N08.xx).

Index hospitalization was defined as initial CAP hospitalization observed in the data.

Results

Study Descriptive Statistics

Outcome Descriptions
- Patients demographic and clinical characteristics (age, gender, race, insurance status, comorbidities).
- Description of initial antibiotic therapy administered.
- Hospitalization in the ICU or CCM.
- Rate of CAP-related readmissions at 30 days post index CAP episode.
- In-hospital rate of adverse events. Adverse events reported included:
 - Clostridium difficile infection.
 - Peripheral neuropathy.
 - Hematologic toxicity.
 - Hepatotoxicity.
- Length of hospital stay.

Statistical Analysis
- Frequency counts and percentages were used to summarize categorical variables, and mean and standard deviations were reported for continuous variables.
- Univariate analysis was conducted to examine the association between the outcome and each explanatory variable. Variables of interest (age, gender, health index) were selected using forward selection procedures.
- Data were analyzed using the R statistical software.

Table 1: Key patient demographic and clinical characteristics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N=38,449</th>
<th>Mean±SD</th>
<th>Median±Q25-Q75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>70.1±16.0</td>
<td>68.5±16.9</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>18,824</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>19,625</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>Health Index</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medicare</td>
<td>8,764</td>
<td>23%</td>
<td></td>
</tr>
<tr>
<td>Medicaid</td>
<td>7,565</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>Commercial</td>
<td>11,806</td>
<td>31%</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>9,374</td>
<td>24%</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>25,192</td>
<td>65%</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>7,562</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>3,011</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>Other/Unknown</td>
<td>1,684</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>7,533</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>15,177</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>Heart disease</td>
<td>7,427</td>
<td>19%</td>
<td></td>
</tr>
<tr>
<td>COPD</td>
<td>7,264</td>
<td>19%</td>
<td></td>
</tr>
<tr>
<td>Asthma</td>
<td>7,427</td>
<td>19%</td>
<td></td>
</tr>
<tr>
<td>Renal disease</td>
<td>3,812</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Peripheral neuropathy</td>
<td>944</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>Hematologic toxicity</td>
<td>813</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>Hepatotoxicity</td>
<td>696</td>
<td>2%</td>
<td></td>
</tr>
</tbody>
</table>
| Age (yrs), Gender, Race, Health Index, and comorbidities were associated with differences in patient characteristics.

Rates of adverse events, mortality, and readmission

- **In-hospital rate of adverse events:**
 - There was a 67% increased risk of mortality in the F/BL group compared to the M/BL group (OR=1.65, 95% CI: 1.06–2.56, p-value=0.04).
 - There was a 67% increased risk of mortality in the F/BL group compared to the M/BL group (OR=1.65, 95% CI: 1.06–2.56, p-value=0.04).
- **Rate of CABP related re-hospitalisation at 30 days post index hospitalization:**
 - There was a 67% increased risk of mortality in the F/BL group compared to the M/BL group (OR=1.65, 95% CI: 1.06–2.56, p-value=0.04).
 - There was a 67% increased risk of mortality in the F/BL group compared to the M/BL group (OR=1.65, 95% CI: 1.06–2.56, p-value=0.04).
- **In-hospital rate of adverse events:**
 - There was a 67% increased risk of mortality in the F/BL group compared to the M/BL group (OR=1.65, 95% CI: 1.06–2.56, p-value=0.04).
 - There was a 67% increased risk of mortality in the F/BL group compared to the M/BL group (OR=1.65, 95% CI: 1.06–2.56, p-value=0.04).

Conclusions

- This study provides descriptive, comprehensive data for examining hospital care, including drug utilization among hospitalized CAP patients.
- 41% of the patients prescribed antibiotics including the three major classes of antibiotic therapy at the start of the treatment period.
- The cohort receiving other treatments contained a mix including ICU, IM, immunotherapy, and anacast in various combinations.
- In the guideline-indicated cohort, common use of CAP therapy regimens for CABP and multidrug resistance are observed.

Acknowledgments

- The authors thank the members of the Study Group for their contributions to this study.
- This study was supported by the National Institutes of Health (NIH) grant R01 AI080251 to the National Institute of Allergy and Infectious Diseases (NIAID).
- The content of this material is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

References